General Certificate of Education

Mathematics 6360

MPC2 Pure Core 2

Mark Scheme

2009 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC2

MPC2 (cont)

Q	Solution	Marks	Total	Comments
3(a)	$\begin{aligned} & 24=16 k+12 \\ & k=12 \div 16=0.75 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Condone with 0.75 (OE) subst for k AG ; OE fraction; if verification must explicitly state the conclusion
(b)	$\begin{aligned} & u_{3}=30 \\ & u_{4}=34.5 \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { B1F } \end{gathered}$	2	ft on $0.75 \times$ cand's $u_{3}+12$
(c)(i)	$L=0.75 L+12$	M1	1	Replacing u_{n+1} and u_{n} by L
(ii)	$L=\frac{12}{1-k}=\frac{12}{1-0.75}$	m1		PI, but previous M must be scored
		A1	2	SC: (c)(i) incorrect and then in (c)(ii) $L=0.75 L+12$ leading to $L=48$ scores B2
	Total		7	
4(a)	$\begin{aligned} & h=2 \\ & \mathrm{~g}(x)=\sqrt{x^{3}+1} \end{aligned}$	B1		PI
	$\begin{aligned} & \mathrm{I} \approx h / 2\{\ldots\} \\ & \{\ldots\}=\mathrm{g}(0)+\mathrm{g}(6)+2[\mathrm{~g}(2)+\mathrm{g}(4)] \end{aligned}$	M1		OE summing of areas of the 'trapezia'. Can award even if MR expression for $\mathrm{g}(x)$ but must be using from 0 to 6
	$\begin{aligned} \{\ldots\}= & 1+\sqrt{ } 217+2(3+\sqrt{ } 65) \\ 1 & +14.73 \ldots+2(3+8.06 \ldots) \end{aligned}$	A1		OE Accept 2dp evidence for surds
	(I \approx) 37.8554... $=37.86$ (to 4sf)	A1	4	Must be 37.86
(b)	$\mathrm{f}(x)=\sqrt{(2 x)^{3}+1}=\sqrt{8 x^{3}+1}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	$\sqrt{k x^{3}+1}, k \neq 1 \text { or } 0 \text { or } \mathrm{f}(x)=\mathrm{g}(2 x)$ Either form acceptable
	Total		6	

Q	Solution	Marks	Total	Comments
(b)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{45}{2} x^{\frac{1}{2}}-\frac{5}{2} x^{\frac{3}{2}}$ $\begin{aligned} & \frac{45}{2} x^{\frac{1}{2}}-\frac{5}{2} x^{\frac{3}{2}}=0 \\ & \frac{5}{2} x^{\frac{1}{2}}(9-x)=0 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A2,1,0 } \\ \\ \text { M1 } \\ \text { m1 } \end{gathered}$	3	One power correctly obtained A1 for each term on the RHS coeffs simplified cand's $(a)=0$ Must be solving eqn of form $a x^{m}+b x^{n}=0$, m and n non-zero, with at least one of m and n non-integer and reaching a stage from which the non-zero value of x can be stated PI. Must deal with powers of x correctly and any squaring of $k x^{p}$ terms or expressions must be correct.
	At $M, x=9$ $y_{M}=162$	A1 A1	4	M1 must be scored, else $0 / 4$
(c)	$\text { At } P(1,14), \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{45}{2}-\frac{5}{2}=20$	M1		Attempt to find $y^{\prime}(1)$
	Tangent at $P: y-14=m(x-1)$	m1		$m=$ cand's value of $y^{\prime}(1)$
	$y-14=20 x-20 ; \quad y=20 x-6$	A1	3	$\mathrm{CSO} ; \mathrm{AG}$
(d)	Tangent at $M: y=162$	B1F		ft $y=$ cand's y_{M}
	$\text { At } R, 162=20 x-6 ; x=8.4$	M1		Solving cand's numerical $y_{M}=20 x-6$ to find a value for x
	Distance $R M=\left\|x_{M}-x_{R}\right\|=9-8.4=0.6$	A1F	3	ft on coordinates of M
	Total		13	
6	$\{\text { Area of sector }=\} \frac{1}{2} r^{2} \theta$	M1		$\frac{1}{2} r^{2} \theta$ seen or used for the area; PI
	$r^{2}=\frac{33.75}{\frac{1}{2} \theta} \quad(=56.25)$	m1		Correct rearrangement to $r^{2}=\ldots$ or $r=\ldots$
	$r=7.5$	A1		PI eg by a correct arc length
	$\{\mathrm{Arc}=\} r \theta$	M1		$r \theta$ seen or used for the arc length
	$\ldots .=9$	A1F		scored; if not explicit, PI by ft on $3.2 \times$ cand's r for perimeter
	$\{$ Perimeter $=\} 24\{\mathrm{~cm}\}$	A1	6	
Total			6	

Q	Solution	Marks	Total	Comments
7(a)(i)	$a r=375 ; \quad a r^{4}=81$	B1		For either OE or PI by next line
	$\Rightarrow 375 r^{3}=81$	M1		Elimination of a OE
	$r^{3}=\frac{81}{375}=\frac{27}{125}=0.216 \Rightarrow r=0.6$	A1	3	CSO AG Full valid completion SC: Clear explicit verification, with statement max B1 out of 3. (If considers uniqueness then 3 is possible)
(ii)	$\begin{aligned} & 0.6 a=375 \\ & a=625 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	OE; PI
(b)	$\frac{a}{1-r}=\frac{a}{1-0.6}$	M1		$\frac{a}{1-r} \text { used with } \mid \text { value of } r \mid<1$
	$S_{\infty}=\frac{625}{0.4}=1562.5$	A1F	2	ft on cand's value for $a \ldots$ ie $2.5 \times a$
(c)	$\begin{aligned} & \sum_{n=6}^{\infty} u_{n}=\sum_{n=1}^{\infty} u_{n}-\sum_{n=1}^{5} u_{n} \\ & u_{3}=0.6 u_{2}(=225) \text { and } u_{4}=0.6^{2} u_{2}(=135) \end{aligned}$	M1 M1		Valid method to either find u_{3} and u_{4} or use of $\left\{S_{n}=\right\} \frac{a\left(1-r^{n}\right)}{1-r}$ for either $n=5$ or $n=6$
	$\begin{aligned} & \sum_{n=1}^{5} u_{n}=625+375+225+135+81(=1441) \\ & \sum_{n=6}^{\infty} u_{n}=1562.5-1441=121.5 \end{aligned}$	A1 A1	4	
	Alternative for (c):			
	Recognise that the sum to infinity with first term u_{6} is required	(M1)		
	Valid method to find $u_{6}\left(=0.6 u_{5}\right)$	(M1)		
	$\begin{aligned} \sum_{n=6}^{\infty} u_{n} & =\frac{81 \times 0.6}{1-0.6} \\ & =121.5 \end{aligned}$	(A1) (A1)		
	Total		11	

Q	Solution	Marks	Total	Comments
8(a)	$\begin{aligned} & \frac{\sin \theta}{\cos \theta}-\frac{\cos \theta}{\cos \theta}=4 \\ & \tan \theta-1=4 \end{aligned}$	M1		$\tan \theta=\frac{\sin \theta}{\cos \theta}$ stated or used
	$\tan \theta=5$	A1	2	AG; CSO
(b)(i)	$\begin{aligned} & 2 \cos ^{2} x-\sin x=1 \\ & 2\left(1-\sin ^{2} x\right)-\sin x=1 \end{aligned}$	M1		Use of $\cos ^{2} x+\sin ^{2} x=1$
	$\begin{aligned} & 2-2 \sin ^{2} x-\sin x=1 \\ & \Rightarrow 2 \sin ^{2} x+\sin x-1=0 \end{aligned}$	A1	2	AG; CSO
(ii)	$(\sin x+1)(2 \sin x-1)=0$	M1		Factorisation or use of formula; PI by both correct values for $\sin x$
	$\sin x=-1, \quad \sin x=0.5$	A1		Need both
	$(\sin x=-1) \text { so } x=270^{\circ}$	B1		
	$(\sin x=0.5) \text { so } x=30^{\circ}$	A1		30° as the only acute angle
	$x=180-30=150^{\circ}$	B1F	5	ft for $2^{\text {nd }}$ angle from $\mathrm{c}^{\prime} \mathrm{s} \sin x=$ non-integer
				Ignore values outside interval $0^{\circ}-360^{\circ}$ but extras inside interval lose the corresp. B, A or B1F mark. If using rads, accepting either equivalent exact vals (in terms of pi) or 2 dp values instead of degrees, penalise max of 1 mark from any of the final three marks (B1A1B1F) awarded NMS: 270° (B1); $30^{\circ}, 150^{\circ}$ (B1) [max 2/5]
	Total		9	

MPC2 (cont)

Q	Solution	Marks	Total	Comments
9(a)(i)	$\sqrt{125}=\sqrt{25 \times 5}=5 \sqrt{5}$	M1		OE eg $\sqrt{125}=\sqrt{5^{3}}$ or $5^{1.5}$ seen
	$5^{p}=\sqrt{125} \Rightarrow p=1.5$	A1	2	Correct value of p must be explicitly stated
	Alternative for (a)(i):			
	$p \log 5=\frac{1}{2} \log 125$	(M1)		$\begin{aligned} & \text { OE eg } p \log 5=\log 11.18 \\ & \text { or eg } p=\log _{5} \sqrt{125} \end{aligned}$
	$p \log 5=\frac{3}{2} \log 5 \Rightarrow p=\frac{3}{2}$	(A1)		Correct value of p must be explicitly stated
(ii)	$5^{2 x}=\sqrt{125}=5^{p} \Rightarrow x=0.5 p=0.75$	B1F	1	Must be $0.5 \times c$'s value of p SC: $x=0.75$ with c's ans (a)(i) $5^{1.5}$ scores B1F
(b)	$\begin{aligned} & 3^{2 x-1}=0.05 \\ & (2 x-1) \log 3=\log 0.05 \end{aligned}$	M1		Take logs of both sides and use $3^{\text {rd }}$ law of logs. PI eg by $2 x-1=\log _{3} 0.05$ seen
	$x=\frac{\log _{10} 0.05}{2 \log _{10} 3}+\frac{1}{2}$	m1		Correct rearrangement to $x=\ldots$. PI
	$=-0.8634(165 \ldots)=-0.8634 \text { to } 4 \mathrm{dp}$	A1	3	Condone > 4dp. Must see logs clearly used in solution, so NMS scores $0 / 3$
(c)	$\log _{a} x=2\left(\log _{a} 3+\log _{a} 2\right)-1$			
	$=2 \log _{a}(3 \times 2)-1$	M1		A valid law of logs used
	$=\log _{a}\left(6^{2}\right)-1$	M1		Another valid law of logs used
	$=\log _{a} 36-\log _{a} a$	B1		$\log _{a} a=1$ quoted or used
				or $\log _{a} \frac{x}{k}=-1 \Rightarrow \frac{x}{k}=a^{-1}$ OE
	$\log _{a} x=\log _{a}\left(\frac{36}{a}\right) \Rightarrow x=\frac{36}{a}$	A1	4	CSO Must be $x=\frac{36}{a}$ or $x=36 a^{-1}$
	Total		10	
	TOTAL		75	

